Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smoothed Online Optimization for Target Tracking: Robust and Learning-Augmented Algorithms

Authors: Zeynali, Ali; Sahebdel, Mahsa; Liu, Qingsong; Hajiesmaili, Mohammad; Sitaraman, Ramesh K.;

Smoothed Online Optimization for Target Tracking: Robust and Learning-Augmented Algorithms

Abstract

We introduce the Smoothed Online Optimization for Target Tracking (SOOTT) problem, a new framework that integrates three key objectives in online decision-making under uncertainty: (1) tracking cost for following a dynamically moving target, (2) adversarial perturbation cost for withstanding unpredictable disturbances, and (3) switching cost for penalizing abrupt changes in decisions. This formulation captures real-world scenarios such as elastic and inelastic workload scheduling in AI clusters, where operators must balance long-term service-level agreements (e.g., LLM training) against sudden demand spikes (e.g., real-time inference). We first present BEST, a robust algorithm with provable competitive guarantees for SOOTT. To enhance practical performance, we introduce CoRT, a learning-augmented variant that incorporates untrusted black-box predictions (e.g., from ML models) into its decision process. Our theoretical analysis shows that CoRT strictly improves over BEST when predictions are accurate, while maintaining robustness under arbitrary prediction errors. We validate our approach through a case study on workload scheduling, demonstrating that both algorithms effectively balance trajectory tracking, decision smoothness, and resilience to external disturbances.

10 pages, 14 pages appendix

Keywords

Machine Learning, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Systems and Control (eess.SY), Systems and Control, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green