Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ABCI progresses and plans: Parallel computing and transverse Shobuda-Napoly integral

Authors: Y. H. Chin; K. Takata; Y. Shobuda;

ABCI progresses and plans: Parallel computing and transverse Shobuda-Napoly integral

Abstract

In this paper, we report the recent progresses of ABCI. First, ABCI now supports parallel processing in OpenMP for a shared memory system, such as a PC with multiple CPUs or a CPU with multiple cores. Tests with a Core2Duo (two cores) show that the new ABCI is about 1.7 times faster than the non-parallelized ABCI. The new ABCI also supports the dynamic memory allocation for nearly all arrays for field calculations so that the amount of memory needed for a run is determined dynamically during runtime. A user can use any number of mesh points as far as the total allocated memory is within a physical memory of his PC. As a new and important progress of the features, the transverse extension of Napoly integral (derived by Shobuda) has been implemented: it permits calculations of wake potentials in structures extending to the inside of the beam tube radius or having unequal tube radii at the two sides not only for longitudinal but also for transverse cases, while the integration path can be confined to a finite length by having the integration contour beginning and ending on the beam tubes. The future upgrade plans will be also discussed. The new ABCI is available as a Windows stand-alone executable module so that no installation of the program is necessary.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!