Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://epubs.siam.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://doi.org/10.1137/1.9781...
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deterministic parallel algorithms for fooling polylogarithmic juntas and the Lovász Local Lemma

Deterministic parallel algorithms for fooling polylogarithmic juntas and the Lovász local lemma
Authors: Harris, David G.;

Deterministic parallel algorithms for fooling polylogarithmic juntas and the Lovász Local Lemma

Abstract

Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low (almost-) independence. A series of papers, beginning with Luby (1993) and continuing with Berger and Rompel (1991) and Chari et al. (2000), showed that these techniques can be combined to give deterministic parallel algorithms for combinatorial optimization problems involving sums of w -juntas. We improve these algorithms through derandomized variable partitioning, reducing the processor complexity to essentially independent of w and time complexity to linear in w . As a key subroutine, we give a new algorithm to generate a probability space which can fool a given set of neighborhoods. Schulman (1992) gave an NC algorithm to do so for neighborhoods of size w ≤ O (log n ). Our new algorithm is in NC 1 , with essentially optimal time and processor complexity, when w = O (log n ); it remains in NC up to w = polylog( n ). This answers an open problem of Schulman. One major application of these algorithms is an NC algorithm for the Lovász Local Lemma. Previous NC algorithms, including the seminal algorithm of Moser and Tardos (2010) and the work of Chandrasekaran et. al (2013), required that (essentially) the bad-events could span only O (log n ) variables; we relax this to polylog( n ) variables. We use this for an NC 2 algorithm for defective vertex coloring, which works for arbitrary degree graphs.

Keywords

FOS: Computer and information sciences, Combinatorial probability, Combinatorial optimization, NC algorithms, Randomized algorithms, Probability (math.PR), derandomization, method of conditional expectations, Computer Science - Distributed, Parallel, and Cluster Computing, Lovász local lemma, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Analysis of algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC), Parallel algorithms in computer science, Mathematics - Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
bronze