
doi: 10.3390/rs12050878
In this study, a Bayesian-based three-cornered hat (BTCH) method is developed to improve the estimation of terrestrial evapotranspiration (ET) by integrating multisource ET products without using any a priori knowledge. Ten long-term (30 years) gridded ET datasets from statistical or empirical, remotely-sensed, and land surface models over contiguous United States (CONUS) are integrated by the BTCH and ensemble mean (EM) methods. ET observations from eddy covariance towers (ETEC) at AmeriFlux sites and ET values from the water balance method (ETWB) are used to evaluate the BTCH- and EM-integrated ET estimates. Results indicate that BTCH performs better than EM and all the individual parent products. Moreover, the trend of BTCH-integrated ET estimates, and their influential factors (e.g., air temperature, normalized differential vegetation index, and precipitation) from 1982 to 2011 are analyzed by the Mann–Kendall method. Finally, the 30-year (1982 to 2011) total water storage anomaly (TWSA) in the Mississippi River Basin (MRB) is retrieved based on the BTCH-integrated ET estimates. The TWSA retrievals in this study agree well with those from the Gravity Recovery and Climate Experiment (GRACE).
550, Science, Q, evapotranspiration; Bayesian-based three-cornered hat method; total water storage anomaly, evapotranspiration, total water storage anomaly, bayesian-based three-cornered hat method, 620
550, Science, Q, evapotranspiration; Bayesian-based three-cornered hat method; total water storage anomaly, evapotranspiration, total water storage anomaly, bayesian-based three-cornered hat method, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
