Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://journals.uran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://journals.uran.ua/tarp/a...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.15587/2312-...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Choice of the order of the regression model for forecasting of random non-stationary economic processes

Authors: Kubiv, Stepan;

Choice of the order of the regression model for forecasting of random non-stationary economic processes

Abstract

The object of research is heteroskedastic processes that affect the production of military goods of exporting countries. Today, armed conflicts are the most significant factor affecting the volume of production and export of weapons, since it assumes that the parties have the necessary quantity of weapons and is, in a sense, a stochastic process. The work is devoted to forecasting stochastic effects on the production processes of military goods of exporting countries. As an example, an economic system with stochastic effects and bottleneck problems in production units is considered. The model of the output process is presented as a random process with slow non-stationarity (heteroscedastic process). The methods for predicting non-stationary random processes are used. The problem of choosing and substantiating a mathematical model for predicting a heteroskedastic process is investigated, and considered. It is proved that the most capable short-term forecasting method is the Pade approximation method. It is shown that the Pade method, in fact, is a method of approximation by analytical (finely rational) functions, therefore it can be interpreted as a method of constructing a model of autoregression and moving average (ARIMA). Modifications of the ARIMA model, such as a model of autoregression and integrated moving average or autoregression and fractal integrated moving average, are considered. A modified method is developed for choosing the order of the autoregressive model according to the Akaike information criterion and beyond the Bayesian information criterion. The model problems and examples of experimental dependencies are analyzed. An effective technique is proposed for choosing the order of regression models used in the practical forecasting of stochastic processes, based on the canonical layouts of a random function. To partition the distribution function into non-equidistant intervals with constant flow intensities, an economic recurrence algorithm is used. The calculation results can be used to optimally select the order of the regression model, which approximates the real production process in the form of a time series with random external influences.

Keywords

гетероскедастичність; дискретні часові ряди; модель авторегресії; стохастична система; апроксимація Паде; регресійна модель; порядок моделі; виробнича система, UDC 519.688+517.9, гетероскедастичность; дискретные временные ряды; модель авторегрессии; стохастическая система; аппроксимация Паде; регрессионная модель; порядок модели, УДК 519.688+517.9, heteroskedasticity; discrete time series; autoregressive model; stochastic system; Padé approximation; regression model; model order; production system

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 2
  • 2
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
2
gold
Related to Research communities