Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Linear Algebra and i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Linear Algebra and its Applications
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction of exceptional copositive matrices

Authors: Štrekelj, Tea; Zalar, Aljaž;

Construction of exceptional copositive matrices

Abstract

An $n\times n$ symmetric matrix $A$ is copositive if the quadratic form $x^TAx$ is nonnegative on the nonnegative orthant $\mathbb{R}^{n}_{\geq 0}$. The cone of copositive matrices contains the cone of matrices which are the sum of a positive semidefinite matrix and a nonnegative one and the latter contains the cone of completely positive matrices. These are the matrices of the form $BB^T$ for some $n\times r$ matrix $B$ with nonnegative entries. The above inclusions are strict for $n\geq5.$ The first main result of this article is a free probability inspired construction of exceptional copositive matrices of all sizes $\geq 5$, i.e., copositive matrices that are not the sum of a positive semidefinite matrix and a nonnegative one. The second contribution of this paper addresses the asymptotic ratio of the volume radii of compact sections of the cones of copositive and completely positive matrices. In a previous work by the authors, it was shown that, by identifying symmetric matrices naturally with quartic even forms, and equipping them with the $L^2$ inner product and the Lebesgue measure, the ratio of the volume radii of sections with a suitably chosen hyperplane is bounded below by a constant independent of $n$ as $n$ tends to infinity. In this paper, we extend this result by establishing an analogous bound when the sections of the cones are unit balls in the Frobenius inner product.

12 pages. arXiv admin note: substantial text overlap with arXiv:2305.16224

Keywords

Real algebra, completely positive matrix, Combinatorial optimization, copositive matrix, convex cone, Functional Analysis (math.FA), Mathematics - Functional Analysis, positive polynomial, Inequalities and extremum problems involving convexity in convex geometry, FOS: Mathematics, Convex sets and cones of operators, Semidefinite programming, sum of squares, 13J30, 47L07, 52A40 (Primary), 90C22, 90C27 (Secondary)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid