
Methods from supervised machine learning allow the classification of new data automatically and are tremendously helpful for data analysis. The quality of supervised maching learning depends not only on the type of algorithm used, but also on the quality of the labelled dataset used to train the classifier. Labelling instances in a training dataset is often done manually relying on selections and annotations by expert analysts, and is often a tedious and time-consuming process. Active learning algorithms can automatically determine a subset of data instances for which labels would provide useful input to the learning process. Interactive visual labelling techniques are a promising alternative, providing effective visual overviews from which an analyst can simultaneously explore data records and select items to a label. By putting the analyst in the loop, higher accuracy can be achieved in the resulting classifier. While initial results of interactive visual labelling techniques are promising in the sense that user labelling can improve supervised learning, many aspects of these techniques are still largely unexplored. This paper presents a study conducted using the mVis tool to compare three interactive visualisations, similarity map, scatterplot matrix (SPLOM), and parallel coordinates, with each other and with active learning for the purpose of labelling a multivariate dataset. The results show that all three interactive visual labelling techniques surpass active learning algorithms in terms of classifier accuracy, and that users subjectively prefer the similarity map over SPLOM and parallel coordinates for labelling. Users also employ different labelling strategies depending on the visualisation used.
10009 Department of Informatics, Computer Networks and Communications, 1708 Hardware and Architecture, 2208 Electrical and Electronic Engineering, 000 Computer science, knowledge & systems, Hardware and Architecture, Visual Analytics, 1705 Computer Networks and Communications, Signal Processing, 1711 Signal Processing, Electrical and Electronic Engineering, Interactive Visual Data Analysis
10009 Department of Informatics, Computer Networks and Communications, 1708 Hardware and Architecture, 2208 Electrical and Electronic Engineering, 000 Computer science, knowledge & systems, Hardware and Architecture, Visual Analytics, 1705 Computer Networks and Communications, Signal Processing, 1711 Signal Processing, Electrical and Electronic Engineering, Interactive Visual Data Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
