
Summary: This paper presents a design methodology for developing efficient distributed-memory parallel programs for block recursive algorithms such as the fast Fourier transform (FFT) and bitonic sort. This design methodology is specifically suited for most modern supercomputers having a distributed memory architecture with a circuit-switched or wormhole routed mesh or a hypercube interconnection network. A mathematical framework based on the tensor product and other matrix operations is used for representing algorithms. Communication-efficient implementations with effectively overlapped computation and communication are achieved by manipulating the mathematical representation using the tensor product algebra. Performance results for FFT programs on the Intel Paragon are presented.
distributed-memory parallel programs, Theory of software, Theory of programming languages, Parallel algorithms in computer science, performance
distributed-memory parallel programs, Theory of software, Theory of programming languages, Parallel algorithms in computer science, performance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
