Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Numerical Analysis a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Numerical Analysis and Applications
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2013
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algorithms for solving inverse geophysical problems on parallel computing systems

Authors: Akimova, E. N.; Belousov, D. V.; Misilov, V. E.;

Algorithms for solving inverse geophysical problems on parallel computing systems

Abstract

Summary: For solving inverse gravimetry problems, efficient stable parallel algorithms based on iterative gradient methods are proposed. For solving systems of linear algebraic equations with block-tridiagonal matrices arising in geoelectrics problems, a parallel matrix sweep algorithm, a square root method, and a conjugate gradient method with preconditioner are proposed. The algorithms are implemented numerically on the MVS-IMM parallel computing system, NVIDIA graphics processors, and the Intel multi-core CPU with the use of new computing technologies. The parallel algorithms are incorporated into a developed system of remote computations `Specialized web-portal for solving geophysical problems on multiprocessor computers.' Problems with `quasi-model' and real data are solved.

Keywords

Iterative numerical methods for linear systems, PARALLEL COMPUTING SYSTEM, square root method, preconditioner, Inverse problems for integral equations, parallel computing system, ITERATIVE GRADIENTS, Numerical methods for integral equations, algorithms, Gravitational waves, MATRIX ALGEBRA, iterative method, parallel algorithm, SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS, Preconditioners for iterative methods, matrix sweep algorithm, ALGEBRA, inverse gravimetry problem, GRAVIMETERS, ITERATIVE METHODS, LINEAR EQUATIONS, COMPUTING TECHNOLOGY, direct method, PARALLEL ARCHITECTURES, DIRECT AND ITERATIVE METHODS, Parallel numerical computation, MULTIPROCESSOR COMPUTERS, PROBLEM SOLVING, CONJUGATE GRADIENT METHOD, MICROPROCESSOR CHIPS, DIRECT AND ITERATIVE METHOD, PARALLEL COMPUTING SYSTEMS, REMOTE COMPUTATIONS, Ill-posedness and regularization problems in numerical linear algebra, conjugate gradient method, INVERSE GRAVIMETRY PROBLEMS, Computational methods for problems pertaining to relativity and gravitational theory, GEOPHYSICS, Numerical methods for inverse problems for integral equations, PARALLEL ALGORITHMS, INVERSE PROBLEMS, gradient methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze