
Segmentation of lung fields is an important pre-requisite step in chest radiographic computer-aided diagnosis systems as it precisely defines the region-of-interest on which different operations are applied. However, it is immensely challenging due to extreme variations in shape and size of lungs. Manual segmentation is also prone to large inter-observer and intra-observer variations. Thus, an automated method for lung field segmentation with sufficiently high accuracy is unsparingly required. This paper presents a deep learning-based fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs. The major contribution of this work is in the unique design of the encoder-decoder network that makes it especially suitable for lung field segmentation. The proposed network is trained, tested and evaluated on publicly available standard datasets. The result of evaluation indicates that the performance of the proposed method, i.e. accuracy of 98.73% and overlap of 95.10%, is better than state-of-the-art methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
