
arXiv: 2504.08737
Researchers recently extended Distributed Constraint Optimization Problems (DCOPs) to Communication-Aware DCOPs so that they are applicable in scenarios in which messages can be arbitrarily delayed. Distributed asynchronous local search and inference algorithms designed for CA-DCOPs are less vulnerable to message latency than their counterparts for regular DCOPs. However, unlike local search algorithms for (regular) DCOPs that converge to k-opt solutions (with k > 1), that is, they converge to solutions that cannot be improved by a group of k agents), local search CA-DCOP algorithms are limited to 1-opt solutions only. In this paper, we introduce Latency-Aware Monotonic Distributed Local Search-2 (LAMDLS-2), where agents form pairs and coordinate bilateral assignment replacements. LAMDLS-2 is monotonic, converges to a 2-opt solution, and is also robust to message latency, making it suitable for CA-DCOPs. Our results indicate that LAMDLS-2 converges faster than MGM-2, a benchmark algorithm, to a similar 2-opt solution, in various message latency scenarios.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Distributed Local Search Algorithms, Latency Awareness, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Artificial Intelligence, Multi-Agent Optimization, Distributed, Parallel, and Cluster Computing (cs.DC), Distributed Constraint Optimization Problems, 004, ddc: ddc:004
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Distributed Local Search Algorithms, Latency Awareness, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Artificial Intelligence, Multi-Agent Optimization, Distributed, Parallel, and Cluster Computing (cs.DC), Distributed Constraint Optimization Problems, 004, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
