
Clustering analysis plays an important role in solving practical problems in such domains as data mining in large databases. In this paper, we are interested in fuzzy c-means (FCM) based algorithms. The main purpose is to design an effective validity function to measure the result of clustering and detecting the best number of clusters for a given data set in practical applications. After a review of the relevant literature, we present the new validity function. Experimental results and comparisons will be given to illustrate the performance of the new validity function.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
