
In this paper we discuss some questions of applying evolutionary algorithms to multiobjective optimization problems with continuous variables. A main question of transforming evolutionary algorithms for scalar optimization into those for multiobjective optimization concerns the modification of the selection step. In an earlier article we have analyzed special properties of selection rules called efficiency preservation and negative efficiency preservation. Here, we discuss the use of these properties by applying an accordingly modified selection rule to some test problems. The number of efficient alternatives of a population for different test problems provides a better understanding of the change of data during the evolutionary process. Also effects of the number of objective functions are treated. We also analyze the influence of the number of objectives and the relevance of these results in the context of the 1/5 rule, a mutation control concept for scalar evolutionary algorithms which cannot easily be transformed into the multiobjective case.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
