Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Engineering
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new unified theory underlying time dependent linear first‐order systems: a prelude to algorithms by design

A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design
Authors: Zhou, X.; Tamma, K. K.;

A new unified theory underlying time dependent linear first‐order systems: a prelude to algorithms by design

Abstract

AbstractA new unified theory underlying the theoretical design of linear computational algorithms in the context of time dependent first‐order systems is presented. Providing for the first time new perspectives and fresh ideas, and unlike various formulations existing in the literature, the present unified theory involves the following considerations: (i) it leads to new avenues for designing new computational algorithms to foster the notion of algorithms by design and recovering existing algorithms in the literature, (ii) describes a theory for the evolution of time operators via a unified mathematical framework, and (iii) places into context and explains/contrasts future new developments including existing designs and the various relationships among the different classes of algorithms in the literature such as linear multi‐step methods, sub‐stepping methods, Runge–Kutta type methods, higher‐order time accurate methods, etc. Subsequently, it provides design criteria and guidelines for contrasting and evaluating time dependent computational algorithms. The linear computational algorithms in the context of first‐order systems are classified as distinctly pertaining to Type 1, Type 2, and Type 3 classifications of time discretized operators. Such a distinct classification, provides for the first time, new avenues for designing new computational algorithms not existing in the literature and recovering existing algorithms of arbitrary order of time accuracy including an overall assessment of their stability and other algorithmic attributes. Consequently, it enables the evaluation and provides the relationships of computational algorithms for time dependent problems via a standardized measure based on computational effort and memory usage in terms of the resulting number of equation systems and the corresponding number of system solves. A generalized stability and accuracy limitation barrier theorem underlies the generic designs of computational algorithms with arbitrary order of accuracy and establishes guidelines which cannot be circumvented. In summary, unlike the traditional approaches and classical school of thought customarily employed in the theoretical development of computational algorithms, the unified theory underlying time dependent first‐order systems serves as a viable avenue to foster the notion of algorithms by design. Copyright © 2004 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Finite difference and finite volume methods for ordinary differential equations, Method of lines for initial value and initial-boundary value problems involving PDEs, Padé methods, finite difference, Linear ordinary differential equations and systems, linear systems, method of lines, stability, Numerical methods for initial value problems involving ordinary differential equations, first-order systems, Initial value problems for second-order parabolic equations, Stability and convergence of numerical methods for ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!