Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A highly efficient framework for outlier detection in urban traffic flow

Authors: Xing Wang; Ruihao Zeng; Fumin Zou; Faliang Huang; Biao Jin;

A highly efficient framework for outlier detection in urban traffic flow

Abstract

Abstract The outliers in traffic flow represent the anomalies or emergencies in the road. The detection and research of outliers will help to reveal the mechanism of such events. Aiming at the problem of outlier detection in urban traffic flow, this paper innovatively proposes a highly efficient traffic outlier detection framework based on the study of road traffic flow patterns. The main research works are as follows: (1) data pre‐processing, the road traffic flow matrix of the roads is calculated based on the collected GPS data, the non‐negative matrix factorisation algorithm is chosen to reduce the dimension of the matrix. (2) Road traffic flow pattern extraction, the fuzzy C‐means clustering algorithm with the Optimal k‐cluster centre (K‐FCM) is adopted to cluster the roads with the same road traffic flow pattern. (3) Outlier detection model training and evaluation, kernel density estimation is introduced to fit the probability density of roads traffic flow matrices which are used to train the back propagation neural network based on particle swarm optimisation to obtain the outlier detection and evaluation model, and a threshold is introduced to optimise the precision and recall of the model. The experimental results show that: the average precision and recall of the proposed method in this paper are 95.38% and 96.23%, respectively, and the average detection time is 28.4 seconds. The method has high accuracy, high efficiency and good practical significance.

Related Organizations
Keywords

Transportation engineering, Algebra, TA1001-1280, Electronic computers. Computer science, Outlier detection, QA75.5-76.95, Road traffic flow pattern, K‐FCM clustering algorithm, PSO‐BP neural network, Nonnegative matrix factorization (NMF)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold