Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.18653/v1/20...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Audio-Based Crowd-Sourced Evaluation of Machine Translation Quality

Authors: Haq, Sami Ul; Castilho, Sheila; Graham, Yvette;

Audio-Based Crowd-Sourced Evaluation of Machine Translation Quality

Abstract

Machine Translation (MT) has achieved remarkable performance, with growing interest in speech translation and multimodal approaches. However, despite these advancements, MT quality assessment remains largely text centric, typically relying on human experts who read and compare texts. Since many real-world MT applications (e.g Google Translate Voice Mode, iFLYTEK Translator) involve translation being spoken rather printed or read, a more natural way to assess translation quality would be through speech as opposed text-only evaluations. This study compares text-only and audio-based evaluations of 10 MT systems from the WMT General MT Shared Task, using crowd-sourced judgments collected via Amazon Mechanical Turk. We additionally, performed statistical significance testing and self-replication experiments to test reliability and consistency of audio-based approach. Crowd-sourced assessments based on audio yield rankings largely consistent with text only evaluations but, in some cases, identify significant differences between translation systems. We attribute this to speech richer, more natural modality and propose incorporating speech-based assessments into future MT evaluation frameworks.

Accepted at WMT2025 (ENNLP) for oral presented

Keywords

Human-Computer Interaction, FOS: Computer and information sciences, Computation and Language, Computation and Language (cs.CL), Human-Computer Interaction (cs.HC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green