
doi: 10.1109/mmit.2008.97
There are many applications related to linearly constrained quadratic programs subjected to upper and lower bounds. Lower bounds and upper bounds are treated as different constraints by common quadratic programming algorithms. These traditional treatments significantly increase the computation of quadratic programming problems. We employ pivoting algorithm to solve quadratic programming models. The algorithm can convert the quadratic programming with upper and lower bounds into quadratic programming with upper or lower bounds equivalently by making full use of the Karush-Kuhn-Tucker (KKT) conditions of the problem and decrease the computation. The algorithm can further decrease calculation to obtain solution of quadratic programming problems by solving a smaller linear inequality system which is the linear part of KKT conditions for the quadratic programming problems and is equivalent to the KKT conditions while maintaining complementarity conditions of the KKT conditions to hold.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
