Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Fast Algorithm for Linearly Constrained Quadratic Programming Problems with Lower and Upper Bounds

Authors: Yanwu Liu; Zhongzhen Zhang;

A Fast Algorithm for Linearly Constrained Quadratic Programming Problems with Lower and Upper Bounds

Abstract

There are many applications related to linearly constrained quadratic programs subjected to upper and lower bounds. Lower bounds and upper bounds are treated as different constraints by common quadratic programming algorithms. These traditional treatments significantly increase the computation of quadratic programming problems. We employ pivoting algorithm to solve quadratic programming models. The algorithm can convert the quadratic programming with upper and lower bounds into quadratic programming with upper or lower bounds equivalently by making full use of the Karush-Kuhn-Tucker (KKT) conditions of the problem and decrease the computation. The algorithm can further decrease calculation to obtain solution of quadratic programming problems by solving a smaller linear inequality system which is the linear part of KKT conditions for the quadratic programming problems and is equivalent to the KKT conditions while maintaining complementarity conditions of the KKT conditions to hold.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!