Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/sbesc....
Article . 2018 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring Heterogeneous Task-Level Parallelism in a BMA Video Coding Application using System-Level Simulation

Authors: Carlos Michel Betemps; Mateus Santos De Melo; Amir M. Rahmani; Antonio Miele; Nikil D. Dutt; Bruno Zatt;

Exploring Heterogeneous Task-Level Parallelism in a BMA Video Coding Application using System-Level Simulation

Abstract

High abstraction level models can be used within the system-level simulation to allow rapid evaluations of architectural aspects in early Design Space Exploration (DSE) and direct the development decisions. Further, early DSE is of paramount importance in the specification of future Embedded Systems (ES) and its evaluation for applications with high computing demands and energy restrictions. This paper presents the exploration of Heterogeneous Task-Level Parallelism (HTLP) in a Block-Matching Algorithm (BMA) video coding application. HTLP means the creation and execution of simultaneous threads of kernels defined for different types of Processing Elements (PE) - e.g., CPU and GPU - but all for an equal purpose. We employ a BMA implementation as a case study, and its characteristics are used to explore the HTLP - in particular, its kernels for data preparation, SAD (sum of absolute differences) criteria calculation, and SAD values grouping. For the exploration, a system-level simulation framework (SAVE-htlp) is augmented, being able to support the HTLP. In the performed experiments, SAVE-htlp simulates workload and architecture models and explores 22 settings varying the PE type employed during the tasks' execution and the number of concurrent threads for each kernel. Execution time, performance, energy, and power results show HTLP settings overcoming CPU-only ones as well as those with solely GPUs to process its tasks.

Country
Italy
Keywords

Block-matching algorithm; Embedded systems; Heterogeneous task-level parallelism; System-level simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green