
Aim: Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis bacteria. This study plans to build a novel deep learning-based model for the accurate recognition of tuberculosis. Methods: We propose a novel model — rotation angle vector grid-based fractional Fourier entropy and deep stacked sparse autoencoder (RAVG-FrFE–DSSAE) — which uses RAVG-FrFE as a feature extractor and harnesses DSSAE as the classifier. Moreover, an 18-way MDA is introduced on the training set to avoid overfitting. Results: Experimental results of 10 runs of 10-fold CV showcase that this proposed RAVG-FrFE–DSSAE algorithm yields a reasonable performance including of 93.68[Formula: see text]±[Formula: see text]1.11% sensitivity, 94.38[Formula: see text]±[Formula: see text]1.11% specificity, 94.35[Formula: see text]±[Formula: see text]1.04% precision, 94.03[Formula: see text]±[Formula: see text]0.69% accuracy, 94.01[Formula: see text]±[Formula: see text]0.70% [Formula: see text]-score, 88.07[Formula: see text]±[Formula: see text]1.38% MCC, 94.01[Formula: see text]±[Formula: see text]0.70% FMI, and 0.9725 AUC, respectively. Conclusions: Our result outperforms the eight state-of-the-art approaches. Besides, the result shows the effectiveness of the 18-way MDA.
Biomedical imaging and signal processing, fractional Fourier entropy, deep learning, fractional Fourier transform, multiple-way data augmentation, Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type, Fractional derivatives and integrals, rotation angle vector grid, secondary pulmonary tuberculosis, recognition, deep stacked sparse autoencoder
Biomedical imaging and signal processing, fractional Fourier entropy, deep learning, fractional Fourier transform, multiple-way data augmentation, Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type, Fractional derivatives and integrals, rotation angle vector grid, secondary pulmonary tuberculosis, recognition, deep stacked sparse autoencoder
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
