Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combination of machine learning and data envelopment analysis to measure the efficiency of the Tax Service Office

Authors: Shofinurdin Soffan; Arif Bramantoro; Ahmad A. Alzahrani;

Combination of machine learning and data envelopment analysis to measure the efficiency of the Tax Service Office

Abstract

The Tax Service Office, a division of the Directorate General of Taxes, is responsible for providing taxation services to the public and collecting taxes. Achieving tax targets efficiently while utilizing available resources is crucial. To assess the performance efficiency of decision-making units (DMUs), data envelopment analysis (DEA) is commonly employed. However, ensuring homogeneity among the DMUs is often necessary and requires the application of machine learning clustering techniques. In this study, we propose a three-stage approach: Clustering, DEA, and Regression, to measure the efficiency of all tax service office units. Real datasets from Indonesian tax service offices were used while maintaining strict confidentiality. Unlike previous studies that considered both input and output variables, we focus solely on clustering input variables, as it leads to more objective efficiency values when combining the results from each cluster. The results revealed three clusters with a silhouette score of 0.304 and Davies Bouldin Index of 1.119, demonstrating the effectiveness of fuzzy c-means clustering. Out of 352 DMUs, 225 or approximately 64% were identified as efficient using DEA calculations. We propose a regression algorithm to measure the efficiency of DMUs in new office planning, by determining the values of input and output variables. The optimization of multilayer perceptrons using genetic algorithms reduced the mean squared error by about 75.75%, from 0.0144 to 0.0035. Based on our findings, the overall performance of tax service offices in Indonesia has reached an efficiency level of 64%. These results show a significant improvement over the previous study, in which only about 18% of offices were considered efficient. The main contribution of this research is the development of a comprehensive framework for evaluating and predicting tax office efficiency, providing valuable insights for improving performance.

Related Organizations
Keywords

Genetic algorithm, Data envelopment analysis, Electronic computers. Computer science, Machine learning, Data Mining and Machine Learning, Multilayer perceptron, Efficiency, QA75.5-76.95, Tax service office

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold