Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid selection framework for class balancing approaches based on integrated CNN and decision making techniques for lung cancer diagnosis

Authors: Mustafa Mohammed Jassim; Mustafa Musa Jaber;

Hybrid selection framework for class balancing approaches based on integrated CNN and decision making techniques for lung cancer diagnosis

Abstract

Lung cancer is the fastest-growing and most dangerous type of cancer worldwide. It ranks first among cancer diseases in the number of deaths, and diagnosing it at late stages makes treatment more difficult. Artificial intelligence has played an essential role in the medical field in general, and early diagnosis of diseases and analyzing medical images in particular, as it can reduce human errors that may occur with the medical expert in medical image analysis. In this study, a hybrid framework is proposed between deep learning using the proposed convolutional neural network and multi-criteria decision-making techniques in order to reach an effective and accurate classification model for lung cancer diagnosis and select the best methodology to solve the problem of class imbalance datasets, which is a general problem in medical data that causes problems and errors in prediction. The IQ-OTHNCCD dataset that has a class imbalance was used. Three class balancing techniques were used separately and the data from each one enters the proposed convolutional neural network for feature extraction and classification. Then the Fuzzy-Weighted Zero-Inconsistency algorithm and VIKOR were used to make the ranking for the best classification approach and determine the best technique to balance the classes. This contributed to increasing the efficiency of the classification, where the best model got an accuracy of 99.27 %, sensitivity of 99.33 %, specificity of 99 %, precision of 98.67 % and F1-score of 99 %. This study can be applied to any data that suffers from the class imbalance problem to find the best technique that gives the highest classification accuracy.

Keywords

lung cancer, class imbalance, deep learning, багатокритеріальне прийняття рішень (БКПР), multi-criteria decision making (MCDM), глибоке навчання, дисбаланс класів, рак легенів

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 4
  • 1
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
1
4
Green
gold