Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of the Electron Devices Society
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive Investigation of ANN Algorithms Implemented in MATLAB, Python, and R for Small-Signal Behavioral Modeling of GaN HEMTs

Authors: Saddam Husain; Bagylan Kadirbay; Anwar Jarndal; Mohammad Hashmi;

Comprehensive Investigation of ANN Algorithms Implemented in MATLAB, Python, and R for Small-Signal Behavioral Modeling of GaN HEMTs

Abstract

Artificial Neural Network (ANN) is frequently utilized for the development of behavioral models of Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs). However, exhaustive investigation concerning the ANN algorithms implemented in major programming platforms for small-signal behavioral models of GaN HEMTs is generally not available. To fill this void, this paper carefully examines and evaluates ANN algorithms implemented in MATLAB, Python and R software environments for the development of accurate and efficient GaN HEMTs modelling. At first, the ANN based models are developed using MATLAB, Python’s major frameworks namely Keras, PyTorch and Scikit-learn, and R’s ANN framework namely H2O to model the GaN devices. Thereafter, an in-depth analysis is carried out to comprehend the usefulness of each framework in different application scenarios. At last, a detailed evaluation of the developed models in terms of generalization capability, training and prediction speed, seamless integration with the standard circuit design tool advanced design system, and of the development environments in respect of support and documentation, user-friendly interface, ease of model development, open-access and cost is carried out.

Related Organizations
Keywords

MATLAB, GaN HEMTs, device modelling, Python and R, Electrical engineering. Electronics. Nuclear engineering, ANN, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold