
We present an improved kernel recursive least squares (KRLS) algorithm for the online prediction of nonstationary time series. In order to adaptively sparsify a selected kernel dictionary for the KRLS algorithm, the approximate linear dependency (ALD) criterion based KRLS algorithm is combined with the quantized kernel recursive least squares algorithm to provide an initial framework. In order to sufficiently track the strongly changeable dynamic characteristics due to nonstationarity, a forgetting factor is further inserted into the proposed combined algorithm. It is shown that our proposed algorithm, referred to as the FFIKRLS algorithm, provides a clearly compatible algorithm structure and can be improved by the existing modeling techniques from both mapping and weights updating perspectives. Numerical simulations using benchmark Lorenz time series in comparison with existing methods have demonstrated that the proposed algorithm has superior performance in terms of both predictive accuracy and kernel dictionary size.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
