Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icst62...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Large Language Models of Code on Fault Localization

Authors: Suhwan Ji; Sanghwa Lee; Changsup Lee; Yo-Sub Han; Hyeonseung Im;

Impact of Large Language Models of Code on Fault Localization

Abstract

Identifying the point of error is imperative in software debugging. Traditional fault localization (FL) techniques rely on executing the program and using the code coverage matrix in tandem with test case results to calculate a suspiciousness score for each function or line. Recently, learning-based FL techniques have harnessed machine learning models to extract meaningful features from the code coverage matrix and improve FL performance. These techniques, however, require compilable source code, existing test cases, and specialized tools for generating the code coverage matrix for each programming language of interest. In this paper, we propose, for the first time, a simple but effective sequence generation approach for fine-tuning large language models of code (LLMCs) for FL tasks. LLMCs have recently received much attention for various software engineering problems. In line with these, we leverage the innate understanding of code that LLMCs have acquired through pre-training on large code corpora. Specifically, we fine-tune representative encoder, encoder-decoder, and decoder-based 13 LLMCs for FL tasks. Unlike previous approaches, LLMCs can analyze code sequences even with syntactic errors, since they do not rely on compiled input. Still, they have a limitation on the length of the input data. Therefore, for a fair comparison with existing FL techniques, we extract methods with errors from the project-level benchmark, Defects4J, and analyze them at the line level. Experimental results show that LLMCs fine-tuned with our approach successfully pinpoint error positions in 50.6\%, 64.2\%, and 72.3\% of 1,291 methods in Defects4J for Top-1/3/5 prediction, outperforming the best learning-based state-of-the-art technique by up to 1.35, 1.12, and 1.08 times, respectively. Our findings suggest promising research directions for FL and automated program repair tasks using LLMCs.

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green