Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Joint Reconstruction-Triplet Loss Autoencoder Approach Toward Unseen Attack Detection in IoV Networks

Authors: Julia Boone; Tolunay Seyfi; Fatemeh Afghah;

A Joint Reconstruction-Triplet Loss Autoencoder Approach Toward Unseen Attack Detection in IoV Networks

Abstract

Internet of Vehicles (IoV) systems, while offering significant advancements in transportation efficiency and safety, introduce substantial security vulnerabilities due to their highly interconnected nature. These dynamic systems produce massive amounts of data between vehicles, infrastructure, and cloud services and present a highly distributed framework with a wide attack surface. In considering network-centered attacks on IoV systems, attacks such as Denial-of-Service (DoS) can prohibit the communication of essential physical traffic safety information between system elements, illustrating that the security concerns for these systems go beyond the traditional confidentiality, integrity, and availability concerns of enterprise systems. Given the complexity and volume of data generated by IoV systems, traditional security mechanisms are often inadequate for accurately detecting sophisticated and evolving cyberattacks. Here, we present an unsupervised autoencoder method trained entirely on benign network data for the purpose of unseen attack detection in IoV networks. We leverage a weighted combination of reconstruction and triplet margin loss to guide the autoencoder training and develop a diverse representation of the benign training set. We conduct extensive experiments on recent network intrusion datasets from two different application domains, industrial IoT and home IoT, that represent the modern IoV task. We show that our method performs robustly for all unseen attack types, with roughly 99% accuracy on benign data and between 97% and 100% performance on anomaly data. We extend these results to show that our model is adaptable through the use of transfer learning, achieving similarly high results while leveraging domain features from one domain to another.

Accepted for publication in the IEEE Internet of Things Journal (IoT-J)

Related Organizations
Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green