
Traditional assembly process design tasks are generally performed manually by experienced craftsmen using 2D drawings, which often require the use of physical prototypes. This kind of assembly process design mode inevitably has the defects of low optimization degree, low design efficiency, and high cost. The current computer-aided assembly process design also has problems such as “combination explosion.” Assembly process design technology and algorithm based on virtual reality and artificial intelligence is an effective way to solve the above problems. The application of the system in a virtual reality system provides an accurate positioning method in a virtual reality system. The ultrasonic three-dimensional space positioning system uses a differential method to improve the ranging accuracy. The system has the advantages of strong anti-electromagnetic interference, insensitivity to light and no electromagnetic radiation; thus, it is suitable for application in virtual reality systems. In the paper, two different methods of assembly process planning are proposed for interactive constraint definition assembly and automatic constraint recognition assembly, which make up for the lack of a single method, make the assembly process more realistic, and realize the assembly path by acquiring sampling points. The recording and playback of the assembly process planning process is achieved using screenshots and video compression techniques.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
