
A division-of-focal-plane (DoFP) polarimeter enables us to acquire images with multiple polarization orientations in one shot and thus it is valuable for many applications using polarimetric information. The image processing pipeline for a DoFP polarimeter entails two crucial tasks: denoising and demosaicking. While polarization demosaicking for a noise-free case has increasingly been studied, the research for the joint task of polarization denoising and demosaicking is scarce due to the lack of a suitable evaluation dataset and a solid baseline method. In this paper, we propose a novel dataset and method for polarization denoising and demosaicking. Our dataset contains 40 real-world scenes and three noise-level conditions, consisting of pairs of noisy mosaic inputs and noise-free full images. Our method takes a denoising-then-demosaicking approach based on well-accepted signal processing components to offer a reproducible method. Experimental results demonstrate that our method exhibits higher image reconstruction performance than other alternative methods, offering a solid baseline.
Published in ICIP2025; Project page: http://www.ok.sc.e.titech.ac.jp/res/PolarDem/PDD.html
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, Image and Video Processing, Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, Image and Video Processing, Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
