Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Nutrition
Article . 2023 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vicia faba Peptide Network Supplementation Does Not Differ From Milk Protein in Modulating Changes in Muscle Size During Short-Term Immobilization and Subsequent Remobilization, but Increases Muscle Protein Synthesis Rates During Remobilization in Healthy Young Men

Authors: Michelle E.G. Weijzen; Andrew M. Holwerda; Guus H.J. Jetten; Lisanne H.P. Houben; Alish Kerr; Heidi Davis; Brian Keogh; +3 Authors

Vicia faba Peptide Network Supplementation Does Not Differ From Milk Protein in Modulating Changes in Muscle Size During Short-Term Immobilization and Subsequent Remobilization, but Increases Muscle Protein Synthesis Rates During Remobilization in Healthy Young Men

Abstract

Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models.This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization.Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates.Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027).NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.

Keywords

REHABILITATION, EXPRESSION, Male, mice, Muscle Proteins, Peptides/metabolism, Immobilization/methods, Quadriceps Muscle, dietary supplements, recovery, Mice, Immobilization, plant-derived protein supplementation, Quadriceps Muscle/metabolism, Artificial Intelligence, STRENGTH, Humans, Animals, ANABOLIC RESISTANCE, Muscle Strength, skeletal muscle, Muscle, Skeletal, NEUROMUSCULAR ELECTRICAL-STIMULATION, Muscle Proteins/metabolism, LEG IMMOBILIZATION, Muscle, Skeletal/metabolism, Vicia faba/metabolism, HUMAN QUADRICEPS MUSCLE, OCCURS, artificial intelligence, Milk Proteins, Muscular Atrophy/metabolism, DISUSE ATROPHY, Vicia faba, Muscular Atrophy, immobilization, Dietary Supplements, SKELETAL-MUSCLE, Milk Proteins/pharmacology, Peptides, muscle protein synthesis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid