
Classical combinatorial optimization concerns finding a feasible subset of a ground set in order to optimize an objective function. We address in this article the inverse optimization problem with the k-max function. In other words, we attempt to perturb the weights of elements in the ground set at minimum total cost to make a predetermined subset optimal in the fashion of the k-max objective with respect to the perturbed weights. We first show that the problem is in general NP-hard. Regarding the case of independent feasible subsets, a combinatorial O(n2 log n) time algorithm is developed, where n is the number of elements in E. Special cases with improved complexity are also discussed.
bottleneck, k-max, inverse optimization, T58.6-58.62, convex, combinatorial algorithms., Management information systems
bottleneck, k-max, inverse optimization, T58.6-58.62, convex, combinatorial algorithms., Management information systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
