
pmid: 37596420
To extract weak fetal ECG signals from the mixed ECG signal on the mother's abdominal wall, providing a basis for accurately estimating fetal heart rate and analyzing fetal ECG morphology. First, based on the relationship between the maternal chest ECG signal and the maternal ECG component in the abdominal signal, the temporal convolutional encoder-decoder network (TCED-Net) model is trained to fit the nonlinear transmission of the maternal ECG signal from the chest to the abdominal wall. Then, the maternal chest ECG signal is nonlinearly transformed to estimate the maternal ECG component in the abdominal mixed signal. Finally, the estimated maternal ECG component is subtracted from the abdominal mixed signal to obtain the fetal ECG component. The simulation results on the FECGSYN dataset show that the proposed approach achieves the best performance in F1 score, mean square error (MSE), and quality signal-to-noise ratio (qSNR) (98.94%, 0.18, and 8.30, respectively). On the NI-FECG dataset, although the fetal ECG component is small in energy in the mixed signal, this method can effectively suppress the maternal ECG component and thus extract a clearer and more accurate fetal ECG signal. Compared with existing algorithms, the proposed method can extract clearer fetal ECG signals, which has significant application value for effective fetal health monitoring during pregnancy.
Electrocardiography, Pregnancy, Humans, Female, Signal Processing, Computer-Assisted, Computer Simulation, Fetal Monitoring, Algorithms
Electrocardiography, Pregnancy, Humans, Female, Signal Processing, Computer-Assisted, Computer Simulation, Fetal Monitoring, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
