Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.60692/4g...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/dc...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems

خوارزمية تكرارية متدرجة لحل حلول المربعات الصغرى الدقيقة والمرجحة للأنظمة الخطية المستطيلة
Authors: Kanjanaporn Tansri; Pattrawut Chansangiam;

Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems

Abstract

<abstract><p>Consider a linear system $ Ax = b $ where the coefficient matrix $ A $ is rectangular and of full-column rank. We propose an iterative algorithm for solving this linear system, based on gradient-descent optimization technique, aiming to produce a sequence of well-approximate least-squares solutions. Here, we consider least-squares solutions in a full generality, that is, we measure any related error through an arbitrary vector norm induced from weighted positive definite matrices $ W $. It turns out that when the system has a unique solution, the proposed algorithm produces approximated solutions converging to the unique solution. When the system is inconsistent, the sequence of residual norms converges to the weighted least-squares error. Our work includes the usual least-squares solution when $ W = I $. Numerical experiments are performed to validate the capability of the algorithm. Moreover, the performance of this algorithm is better than that of recent gradient-based iterative algorithms in both iteration numbers and computational time.</p></abstract>

Keywords

FOS: Political science, Norm (philosophy), Computational Mechanics, Estimator, least-squares solution, Engineering, Political science, Eigenvalues and eigenvectors, weighted norm, Numerical Analysis, Numerical Optimization Techniques, Physics, Mathematical optimization, Statistics, Singular value decomposition, Theory and Applications of Compressed Sensing, Iterative method, Algorithm, Computational Theory and Mathematics, Rank (graph theory), Residual, Physical Sciences, Sparse Linear Systems, Iterative Methods, Artificial neural network, Convex Optimization, FOS: Law, Quantum mechanics, convergence analysis, Positive-definite matrix, iterative method, Machine learning, QA1-939, FOS: Mathematics, Linear least squares, Genetics, Orthogonal Matching Pursuit, gradient-descent, Biology, Matrix Algorithms and Iterative Methods, Gradient descent, Applied mathematics, Computer science, Combinatorics, FOS: Biological sciences, Computer Science, Law, Mathematics, Least-squares function approximation, Matrix Computations, Sequence (biology)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold