Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arias Montano, Repos...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.4192/1577-8...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anomaly detection with the density based spatial clustering of applications with noise (DBSCAN) to detect potentially fraudulent wire transfers

Detección de anomalías con agrupación espacial de aplicaciones con ruido basada en densidad (DBSCAN) para detectar transferencias electrónicas potencialmente fraudulentas
Authors: Kim, Yongbum; Vasarhelyi, Miklos A.;

Anomaly detection with the density based spatial clustering of applications with noise (DBSCAN) to detect potentially fraudulent wire transfers

Abstract

Most anomaly detection models are developed by using expert system methods that mimic human experts. The process to capture the expertise honed by fraud examiners is complicated and practically challenging, often resulting in suboptimal models. This study proposes a clustering-based model that captures hidden characteristics of potentially fraudulent wire transfers with less human intervention and expertise. Clustering methods classify and group observations with similar characteristics, excluding anomalies from major clusters. The choice of a clustering method and its parameters is often subjective and significantly affects a set of resulting clusters. In order to reduce the subjectivity of a clustering method while retaining its strength, this study proposes a clustering model with Density Based Spatial Clustering of Applications with Noise (DBSCAN) to detect potentially fraudulent wire transfers of an insurance company. The results show that the DBSCAN models identifies hidden relationships between the variables not only included but also excluded for the modeling with noise wire transfers while less human intervention is needed for clustering parameter selections.

Related Organizations
Keywords

53 Ciencias Económicas, Fraud detection, Anomaly detection, DBSCN, Spatial clustering, Density based clustering, Clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green