Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horticultural Plant ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Horticultural Plant Journal
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Horticultural Plant Journal
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated metabolomics and proteomics analyses reveal the molecular mechanism underlying the yellow leaf phenotype of Camellia sinensis

Authors: Nana Li; Weizhong He; Yufan Ye; Mingming He; Taimei Di; Xinyuan Hao; Changqing Ding; +3 Authors

Integrated metabolomics and proteomics analyses reveal the molecular mechanism underlying the yellow leaf phenotype of Camellia sinensis

Abstract

The tea plant cultivar ‘Zhonghuang 2’ (ZH2) possesses albino-induced yellow leaves that contain low levels of catechins but high contents of amino acids. However, the molecular mechanism underlying the yellow leaf phenotype of ZH2 has not been elucidated clearly. In the current research, the yellow shoots (ZH2-Y) and naturally converted green shoots (ZH2-G) of ZH2 were studied using metabolic and proteomic profiling for a better understanding of the mechanism underlying phenotype formation. In total, 107 differentially changed metabolites (DCMs) were identified from the GC‒MS-based metabolomics, and 189 differentially accumulated proteins (DAPs) were identified from the tandem mass tag (TMT)-based quantitative proteomics. Subsequently, integrated analysis revealed that ‘porphyrin and chlorophyll metabolism’, ‘carbon fixation in photosynthetic organisms’, and ‘phenylpropanoid biosynthesis’ pathways were commonly enriched for DAPs and DCMs. We further found that the inhibition of chlorophyll biosynthesis, the deficiency of photosynthetic proteins and the imbalance of the ROS-scavenging system were the crucial reasons responsible for the chlorosis, chloroplast abnormality and photooxidative damage of ZH2 leaves. Altogether, our research combines metabolomics and proteomics approaches to uncover the molecular mechanism leading to the yellow leaf phenotype of tea plants.

Related Organizations
Keywords

Tea plant, Photosynthetic protein, Chlorophyll-deficient mutant, Plant culture, Photooxidative stress, Chlorophyll biosynthesis, Antioxidant capacity, SB1-1110

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold