Downloads provided by UsageCounts
The main purpose of using the hybrid evolutionary algorithm is to reach optimal values and achieve goals that traditional methods cannot reach and because there are different evolutionary computations, each of them has different advantages and capabilities. Therefore, researchers integrate more than one algorithm into a hybrid form to increase the ability of these algorithms to perform evolutionary computation when working alone. In this paper, we propose a new algorithm for hybrid genetic algorithm (GA) and particle swarm optimization (PSO) with fuzzy logic control (FLC) approach for function optimization. Fuzzy logic is applied to switch dynamically between evolutionary algorithms, in an attempt to improve the algorithm performance. The HEF hybrid evolutionary algorithms are compared to GA, PSO, GAPSO, and PSOGA. The comparison uses a variety of measurement functions. In addition to strongly convex functions, these functions can be uniformly distributed or not, and are valuable for evaluating our approach. Iterations of 500, 1000, and 1500 were used for each function. The HEF algorithm’s efficiency was tested on four functions. The new algorithm is often the best solution, HEF accounted for 75 % of all the tests. This method is superior to conventional methods in terms of efficiency
GA, PSO, гибридный эволюционный алгоритм, оптимизация, еволюційні обчислення, FLC, hybrid evolutionary algorithm, гібридний еволюційний алгоритм, оптимізація, эволюционные вычисления, evolutionary computations, optimization
GA, PSO, гибридный эволюционный алгоритм, оптимизация, еволюційні обчислення, FLC, hybrid evolutionary algorithm, гібридний еволюційний алгоритм, оптимізація, эволюционные вычисления, evolutionary computations, optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 3 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts