
pmid: 40126961
Mechanical ventilation is an effective treatment for critically ill patients and those with pulmonary diseases. However, patient-ventilator asynchrony (PVA) remains a significant challenge, potentially leading to high mortality. Improving patient-ventilator synchrony poses a complex decision-making problem in clinical practice. Traditional methods rely heavily on clinicians' experience, often resulting in inefficiencies, delayed ventilator adjustments, and resource shortages. This paper proposes a novel approach using a deep reinforcement learning (RL) algorithm based on deep Q-learning (DQN) to enhance patient-ventilator synchrony during pressure support ventilation. The action space and reward function are established from clinical experience, and a pneumatic model of the mechanical ventilation system is constructed to simulate various patient conditions and types of PVAs. Clinical data are used to evaluate the RL algorithm qualitatively and quantitatively. The RL-optimized ventilation strategy reduces the proportion of breaths containing PVAs from 37.52% to 7.08%, demonstrating its effectiveness in assisting clinical decision-making, improving synchrony, and enabling intelligent ventilator control, bedside monitoring, and automatic weaning.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
