
Support vector regression (SVR), which has been successfully applied to a variety of real-world problems, simultaneously minimizes the regularization error and empirical risk with a suitable penalty factor. However, it does not embed any prior information of data into the learning process. In this paper, by introducing a new term to seek a projection axis of data points, we present a novel projection SVR (PSVR) algorithm and its least squares version, i.e., least squares PSVR (LS-PSVR). The projection axis not only minimizes the variance of the projected points, but also maximizes the empirical correlation coefficient between the targets and the projected inputs. The finding of axis can be regarded as the structural information of data points, which makes the proposed algorithms be more robust than SVR. The experimental results on several datasets also confirm this conclusion. The idea in this work not only is helpful in understanding the structural information of data, but also can be extended to other regression models.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
