
arXiv: 1412.2005
The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of $x$ observed from a noisy version of the transform coefficients $z = Ax$. In fact, for large zero-mean i.i.d sub-Gaussian $A$, GAMP is characterized by a state evolution whose fixed points, when unique, are optimal. For generic $A$, however, GAMP may diverge. In this paper, we propose adaptive damping and mean-removal strategies that aim to prevent divergence. Numerical results demonstrate significantly enhanced robustness to non-zero-mean, rank-deficient, column-correlated, and ill-conditioned $A$.
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 97 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
