
arXiv: 2411.00357
Rapidly-exploring Random Tree (RRT) algorithms have been applied successfully to challenging robot motion planning and under-actuated nonlinear control problems. However a fundamental limitation of the RRT approach is the slow convergence in configuration spaces with narrow channels because of the small probability of generating test points inside narrow channels. This paper presents an improved RRT algorithm that takes advantage of narrow channels between the initial and goal states to find shorter paths by improving the exploration of narrow regions in the configuration space. The proposed algorithm detects the presence of narrow channel by checking for collision of neighborhood points with the infeasible set and attempts to add points within narrow channels with a predetermined bias. This approach is compared with the classical RRT and its variants on a variety of benchmark planning problems. Simulation results indicate that the algorithm presented in this paper computes a significantly shorter path in spaces with narrow channels.
FOS: Computer and information sciences, Computer Science - Robotics, FOS: Electrical engineering, electronic engineering, information engineering, I.2.9, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Robotics (cs.RO)
FOS: Computer and information sciences, Computer Science - Robotics, FOS: Electrical engineering, electronic engineering, information engineering, I.2.9, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Robotics (cs.RO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
