
Abstract The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices, yet the few available examples belong to the correlated electron systems. Here we demonstrate both theoretically and experimentally that the main group oxide BaBiO3 is a model system for antidoping using oxygen vacancies. The first-principles calculations show that the band gap systematically increases due to the strongly enhanced Bi-O breathing distortions away from the vacancies and the annihilation of Bi 6s/O 2p hybridized conduction bands near the vacancies. The spectroscopic experiments confirm the band gap increasing systematically with electron doping, with a maximal gap enhancement of ~75% when the film’s stoichiometry is reduced to BaBiO2.75. The Raman and diffraction experiments show the suppression of the overall breathing distortion. The study unambiguously demonstrates the remarkable antidoping effect in a material without strong electron correlations and underscores the importance of bond disproportionation in realizing such an effect.
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, breathing distortion, antidoping, Condensed Matter Physics, 530, oxygen vacancies, band gap, main group oxides, Chemical Sciences, Physical Sciences, Nanoscience & Nanotechnology, BaBiO3
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, breathing distortion, antidoping, Condensed Matter Physics, 530, oxygen vacancies, band gap, main group oxides, Chemical Sciences, Physical Sciences, Nanoscience & Nanotechnology, BaBiO3
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
