
Traditional minimum spanning tree-based clustering algorithms only make use of information about edges contained in the tree to partition a data set. As a result, with limited information about the structure underlying a data set, these algorithms are vulnerable to outliers. To address this issue, this paper presents a simple while efficient MST-inspired clustering algorithm. It works by finding a local density factor for each data point during the construction of an MST and discarding outliers, i.e., those whose local density factor is larger than a threshold, to increase the separation between clusters. This algorithm is easy to implement, requiring an implementation of iDistance as the only k-nearest neighbor search structure. Experiments performed on both small low-dimensional data sets and large high-dimensional data sets demonstrate the efficacy of our method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
