Downloads provided by UsageCounts
Bradykinesia is a cardinal symptom of Parkinson's disease (PD) and describes the slowness of movement revealed in patients. Current PD therapies are based on dopamine replacement, and given that bradykinesia is the symptom that best correlates with the dopaminergic deficiency, the knowledge of its fluctuations may be useful in the diagnosis, treatment and better understanding of the disease progression. This paper evaluates a machine learning method that analyses the signals provided by a triaxial accelerometer placed on the waist of PD patients in order to automatically assess bradykinetic gait unobtrusively. This method employs Support Vector Machines to determine those parts of the signals corresponding to gait. The frequency content of strides is then used to determine bradykinetic walking bouts and to estimate bradykinesia severity based on an epsilon-Support Vector Regression model. The method is validated in 12 PD patients, which leads to two main conclusions. Firstly, the frequency content of the strides allows for the dichotomic detection of bradykinesia with an accuracy higher than 90%. This process requires the use of a patient-dependant threshold that is estimated based on a leave-one-patient-out regression model. Secondly, bradykinesia severity measured through UPDRS scores is approximated by means of a regression model with errors below 10%. Although the method has to be further validated in more patients, results obtained suggest that the presented approach can be successfully used to rate bradykinesia in the daily life of PD patients unobtrusively.
Bradykinesia, Support Vector Machine, Malaltia de, Parkinson's disease, Monitoring, Ambulatory, Parkinson's disease -- Research, Inertial sensors, Hypokinesia, Self-help devices for people with disabilities, Support Vector Machines, Accelerometry, Humans, Parkinson, Parkinson, Malaltia de, Gait, Aged, Support vector machines, Ajuts tecnològics per als discapacitats, Àrees temàtiques de la UPC::Ciències de la salut, :Enginyeria biomèdica [Àrees temàtiques de la UPC], :Enginyeria electrònica [Àrees temàtiques de la UPC], Torso, Parkinson Disease, Signal Processing, Computer-Assisted, Equipment Design, Middle Aged, Àrees temàtiques de la UPC::Enginyeria biomèdica, Biosensors, Àrees temàtiques de la UPC::Enginyeria electrònica, Algorithms, :Ciències de la salut [Àrees temàtiques de la UPC]
Bradykinesia, Support Vector Machine, Malaltia de, Parkinson's disease, Monitoring, Ambulatory, Parkinson's disease -- Research, Inertial sensors, Hypokinesia, Self-help devices for people with disabilities, Support Vector Machines, Accelerometry, Humans, Parkinson, Parkinson, Malaltia de, Gait, Aged, Support vector machines, Ajuts tecnològics per als discapacitats, Àrees temàtiques de la UPC::Ciències de la salut, :Enginyeria biomèdica [Àrees temàtiques de la UPC], :Enginyeria electrònica [Àrees temàtiques de la UPC], Torso, Parkinson Disease, Signal Processing, Computer-Assisted, Equipment Design, Middle Aged, Àrees temàtiques de la UPC::Enginyeria biomèdica, Biosensors, Àrees temàtiques de la UPC::Enginyeria electrònica, Algorithms, :Ciències de la salut [Àrees temàtiques de la UPC]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 58 | |
| downloads | 454 |

Views provided by UsageCounts
Downloads provided by UsageCounts