Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/dac180...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Implementation of Finite Field Arithmetic for Binary Ring-LWE Post-Quantum Cryptography Through a Novel Lookup-Table-Like Method

Authors: Jiafeng Xie; Pengzhou He; Wujie Wen;

Efficient Implementation of Finite Field Arithmetic for Binary Ring-LWE Post-Quantum Cryptography Through a Novel Lookup-Table-Like Method

Abstract

The recent advance in the post-quantum cryptography (PQC) field has gradually shifted from the theory to the implementation of the cryptosystem, especially on the hardware platforms. Following this trend, in this paper, we aim to present efficient implementations of the finite field arithmetic (key component) for the binary Ring-Learning-with-Errors (Ring-LWE) PQC through a novel lookup-table (LUT)-like method. In total, we have carried out four stages of interdependent efforts: (i) an algorithm-hardware co-design driven derivation of the proposed LUT-like method is provided detailedly for the key arithmetic of the BRLWE scheme; (ii) the proposed hardware architecture is then presented along with the internal structural description; (iii) we have also presented a novel hybrid size structure suitable for flexible operation, which is the first report in the literature; (iv) the final implementation and comparison processes have also been given, demonstrating that our proposed structures deliver significant improved performance over the state-of-the-art solutions. The proposed designs are highly efficient and are expected to be employed in many emerging applications.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!