
The recent advance in the post-quantum cryptography (PQC) field has gradually shifted from the theory to the implementation of the cryptosystem, especially on the hardware platforms. Following this trend, in this paper, we aim to present efficient implementations of the finite field arithmetic (key component) for the binary Ring-Learning-with-Errors (Ring-LWE) PQC through a novel lookup-table (LUT)-like method. In total, we have carried out four stages of interdependent efforts: (i) an algorithm-hardware co-design driven derivation of the proposed LUT-like method is provided detailedly for the key arithmetic of the BRLWE scheme; (ii) the proposed hardware architecture is then presented along with the internal structural description; (iii) we have also presented a novel hybrid size structure suitable for flexible operation, which is the first report in the literature; (iv) the final implementation and comparison processes have also been given, demonstrating that our proposed structures deliver significant improved performance over the state-of-the-art solutions. The proposed designs are highly efficient and are expected to be employed in many emerging applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
