Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physica Medicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physica Medica
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica Medica
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis

Authors: Berta L.; Rizzetto F.; De Mattia C.; Lizio D.; Felisi M.; Colombo P. E.; Carrazza S.; +6 Authors

Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis

Abstract

To assess the impact of lung segmentation accuracy in an automatic pipeline for quantitative analysis of CT images.Four different platforms for automatic lung segmentation based on convolutional neural network (CNN), region-growing technique and atlas-based algorithm were considered. The platforms were tested using CT images of 55 COVID-19 patients with severe lung impairment. Four radiologists assessed the segmentations using a 5-point qualitative score (QS). For each CT series, a manually revised reference segmentation (RS) was obtained. Histogram-based quantitative metrics (QM) were calculated from CT histogram using lung segmentationsfrom all platforms and RS. Dice index (DI) and differences of QMs (ΔQMs) were calculated between RS and other segmentations.Highest QS and lower ΔQMs values were associated to the CNN algorithm. However, only 45% CNN segmentations were judged to need no or only minimal corrections, and in only 17 cases (31%), automatic segmentations provided RS without manual corrections. Median values of the DI for the four algorithms ranged from 0.993 to 0.904. Significant differences for all QMs calculated between automatic segmentations and RS were found both when data were pooled together and stratified according to QS, indicating a relationship between qualitative and quantitative measurements. The most unstable QM was the histogram 90th percentile, with median ΔQMs values ranging from 10HU and 158HU between different algorithms.None of tested algorithms provided fully reliable segmentation. Segmentation accuracy impacts differently on different quantitative metrics, and each of them should be individually evaluated according to the purpose of subsequent analyses.

Country
Italy
Keywords

Computed tomography; COVID-19; Lung segmentation; QCT; Quantitative imaging; Segmentation algorithms, Original Paper, SARS-CoV-2, Image Processing, Computer-Assisted, COVID-19, Humans, Neural Networks, Computer, Tomography, X-Ray Computed, Lung, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
bronze