
handle: 11089/33365
Celem artykułu jest przedstawienie procesu automatyzacji kodowania tekstów pochodzących z mediów społecznościowych. Wdrożenie tego procesu pozwala na ilościowe potraktowanie jakościowych metod analizy treści. W efekcie otrzymujemy możliwość przeprowadzenia analizy na korpusach liczących setki tysięcy tekstów, które są kodowane w oparciu o ich znaczenia. Jest to możliwe dzięki wykorzystaniu algorytmów uczenia maszynowego (ML). Omawianą metodę kodowania prezentujemy na przykładzie projektu oznaczania „mowy nienawiści” w tekstach pochodzących z polskich forów internetowych. Kluczowym problemem jest precyzyjna konceptualizacja i operacjonalizacja tej kategorii. Pozwala to na przygotowanie dokładnej instrukcji kodowej oraz przeprowadzenie treningu zespołu kodującego. Efektem jest podwyższenie współczynnika zgodności kodujących. Oznaczone teksty zostaną wykorzystane jako dane treningowe dla metod automatycznej kategoryzacji opartych o algorytmy uczenia maszynowego. W dalszej części artykułu opisujemy zastosowane metody kodowania automatycznego. Tekst kończy podsumowanie wskazujące na czynniki, które są kluczowe dla procesu badawczego wykorzystującego uczenie maszynowe.
machine learning, intercoder agreement, hate speech, zgodność kodujących, qualitative data analysis, mowa nienawiści, uczenie maszynowe, jakościowa analiza treści
machine learning, intercoder agreement, hate speech, zgodność kodujących, qualitative data analysis, mowa nienawiści, uczenie maszynowe, jakościowa analiza treści
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
