
The Grid-connection of large-scale intermittent generations brings new challenges to transmission networks (TN). Based on the analysis of life cycle cost (LCC) of TN, taking TN planning as the main decision issue and reliability assessment as a sub-issue, a master-slave relationship of hierarchical decision is formed. Using the multilayer programming theory, a bi-level programming model of TN is proposed. The upper level aims at the optimal LCC and generates a planning scheme. Considering the uncertainties of intermittent generation outputs, loads and line outages, a linear dc stochastic optimal power flow model (SOPF) is formulated to assess the reliability of the generated scheme on lower level. Hybrid algorithm combined an improved deferential evolution algorithm, three-point estimate method and linear programming is adopted to solve the proposed model. Results of 18-bus system show feasibility and validity of proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
