
pmid: 34892438
Recently, transfer learning and deep learning have been introduced to solve intra- and inter-subject variability problems in Brain-Computer Interfaces. However, the generalization ability of these BCIs is still to be further verified in a cross-dataset scenario. This study compared the transfer performance of manifold embedded knowledge transfer and pre-trained EEGNet with three preprocessing strategies. This study also introduced AdaBN for target domain adaptation. The results showed that EEGNet with Riemannian alignment and AdaBN could achieve the best transfer accuracy about 65.6% on the target dataset. This study may provide new insights into the design of transfer neural networks for BCIs by separating source and target batch normalization layers in the domain adaptation process.
Deep Learning, Brain-Computer Interfaces, Electroencephalography, Neural Networks, Computer, Algorithms
Deep Learning, Brain-Computer Interfaces, Electroencephalography, Neural Networks, Computer, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
