Downloads provided by UsageCounts
handle: 2117/329583
We study the existence of periodic solutions in a class of planar Filippov systems obtained from non-autonomous periodic perturbations of reversible piecewise smooth differential systems. It is assumed that the unperturbed system presents a simple two-fold cycle, which is characterized by a closed trajectory connecting a visible two-fold singularity to itself. It is shown that under certain generic conditions the perturbed system has sliding and crossing periodic solutions. In order to get our results, Melnikov's ideas were applied together with tools from the geometric singular perturbation theory. Finally, a study of a perturbed piecewise Hamiltonian model is performed.
Differential equations, Àrees temàtiques de la UPC::Matemàtiques i estadística, Classificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory, Periodic solutions, Classificació AMS::34 Ordinary differential equations::34E Asymptotic theory, :37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory [Classificació AMS], :Matemàtiques i estadística [Àrees temàtiques de la UPC], Equacions diferencials, :34 Ordinary differential equations::34E Asymptotic theory [Classificació AMS], Dynamical Systems (math.DS), Sistemes dinàmics diferenciables, 34A36, 34C23, 37G15, Filippov systems, Sliding dynamics, Piecewise smooth differential systems, :34 Ordinary differential equations::34A General theory [Classificació AMS], FOS: Mathematics, Differentiable dynamical systems, Twofold singularity, Classificació AMS::34 Ordinary differential equations::34A General theory, Mathematics - Dynamical Systems
Differential equations, Àrees temàtiques de la UPC::Matemàtiques i estadística, Classificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory, Periodic solutions, Classificació AMS::34 Ordinary differential equations::34E Asymptotic theory, :37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory [Classificació AMS], :Matemàtiques i estadística [Àrees temàtiques de la UPC], Equacions diferencials, :34 Ordinary differential equations::34E Asymptotic theory [Classificació AMS], Dynamical Systems (math.DS), Sistemes dinàmics diferenciables, 34A36, 34C23, 37G15, Filippov systems, Sliding dynamics, Piecewise smooth differential systems, :34 Ordinary differential equations::34A General theory [Classificació AMS], FOS: Mathematics, Differentiable dynamical systems, Twofold singularity, Classificació AMS::34 Ordinary differential equations::34A General theory, Mathematics - Dynamical Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 36 | |
| downloads | 27 |

Views provided by UsageCounts
Downloads provided by UsageCounts