
Maximum inner product search (MIPS), combined with the hashing method, has become a standard solution to similarity search problems. It often achieves an order of magnitude speedup over nearest neighbor search (NNS) under similar settings. Motivated by the work and achievements along this line, in this paper, we developed a sparse binary hashing method for MIPS to preserve the pairwise similarities with the support of two asymmetric hash functions. We proposed a simple and efficient algorithm that learns two hash functions for the query database and the search database respectively. We conducted experiments to evaluate the proposed method, relying on image retrieval tasks on four benchmark datasets. The empirical results clearly demonstrated the algorithm's promising potential on practical applications in terms of search accuracy and scalability.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
