Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Sisfokom (Sis...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Sisfokom (Sistem Informasi dan Komputer)
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of Machine Learning Algorithms for Predicting Stunting Prevalence in Indonesia

Authors: Moh. Asry Eka Pratama; Syaiful Hendra; Hajra Rasmita Ngemba; Rosmala Nur; Ryfial Azhar; Rahmah Laila;

Comparison of Machine Learning Algorithms for Predicting Stunting Prevalence in Indonesia

Abstract

Stunting is a serious public health problem, especially among under-fives, which can cause serious short- and long-term impacts. Efforts to tackle stunting in Indonesia involve national strategies and development priorities. Therefore, this study aims to compare the performance of machine learning regression algorithms in predicting stunting prevalence in Indonesia. The data collected is secondary data. The data collection was done carefully, taking explicit details regarding the source, scope, extent, and analysis of the dataset, and using a careful sampling methodology. The model evaluation results show that the Random Forest Regression algorithm has the best performance, with a success rate of 90.537%. The application of this model to the new dataset shows that East Nusa Tenggara province has the highest percentage of stunting at 31.85%, while Bali has the lowest percentage at 12.07%. Visualization of the dashboard using Tableau provides a clear picture of the distribution of stunting in Indonesia. In conclusion, this research contributes to the development of science, especially in the field of machine learning and public health, and provides policy recommendations for tackling stunting in Indonesia.

Keywords

machine learning, stunting prevalence, stunting, regression algorithm, Information technology, tableau, T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold
Related to Research communities