Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computing and Inform...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computing and Informatics
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computing and Informatics
Article . 2024 . Peer-reviewed
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correlation Analysis Algorithm for Massive Ultra-High-Dimensional Breast Ultrasound Radiomics Feature Data in a Distributed Environment

Authors: Tang, Yuehong; Chen, Yan; Liu, Wen; Gu, Zheng; Yao, Hui;

Correlation Analysis Algorithm for Massive Ultra-High-Dimensional Breast Ultrasound Radiomics Feature Data in a Distributed Environment

Abstract

Radiomics is a technology that extracts a large number of quantitative features from high-throughput medical images and has become a focus of research. It can help in disease diagnosis, therapy planning, and prognosis evaluation through Big Data analysis algorithms. Radiomics technology can extract hundreds or even tens of thousands of quantifiable data features from medical images, which can no longer fit into the memory of one machine. Therefore, we propose a distributed correlation analysis algorithm (DFCA) based on a MapReduce distributed computing framework for breast ultrasound radiomics feature datasets. Each compute node will produce massive intermediate data while the DFCA calculates the Pearson correlation coefficient of radiomics features. With the increase of feature data and dimensions, the data transmission cost will be in a square growth. To reduce the cost, we propose a distributed correlation estimation algorithm (DFCEA) for radiomics features based on DFCA. The DFCEA algorithm estimates the Pearson correlation coefficient using an iterative method, which can further reduce the I/O cost. The experiment proved that our algorithms are more effective compared to the algorithms in the literature.

Keywords

distributed computing, Radiomics, massive high-dimensional data, correlation analysis, Correlation analysis algorithm for massive ultra-high-dimensional breast ultrasound radiomics feature data in a distributed environment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold